Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Microbiol Spectr ; 11(3): e0115523, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2320156

ABSTRACT

Few studies have comprehensively compared severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-induced and hybrid B- and T-cell responses in people with HIV (PWH) to those in comparable controls without HIV. We included 195 PWH and 246 comparable controls from the AGEhIV COVID-19 substudy. A positive nucleocapsid antibody (INgezim IgA/IgM/IgG) or self-reported PCR test defined prior SARS-CoV-2 infection. SARS-CoV-2 anti-spike (anti-S) IgG titers and anti-S IgG production by memory B cells were assessed. Neutralizing antibody titers were determined in a subset of participants. T-cell responses were assessed by gamma interferon (IFN-γ) release and activation-induced marker assay. We estimated mean differences in postvaccination immune responses (ß) between levels of determinants. Anti-S IgG titers and anti-S IgG production by memory B cells were not different between PWH and controls. Prior SARS-CoV-2 infection (ß = 0.77), receiving mRNA vaccine (ß = 0.56), female sex (ß = 0.24), fewer days between last vaccination and sampling (ß = 0.07), and a CD4/CD8 ratio of <1.0 (ß = -0.39) were independently associated with anti-S IgG titers, but HIV status was not. Neutralization titers against the ancestral and Delta and Omicron SARS-CoV-2 variants were not different between PWH and controls. IFN-γ release was higher in PWH. Prior SARS-CoV-2 infection (ß = 2.39), HIV-positive status (ß = 1.61), and fewer days between last vaccination and sampling (ß = 0.23) were independently associated with higher IFN-γ release. The percentages of SARS-CoV-2-reactive CD4+ and CD8+ T cells, however, were not different between PWH and controls. Individuals with well-controlled HIV generally mount robust vaccine-induced as well as hybrid B- and T-cell immunity across SARS-CoV-2 vaccine platforms similar to controls. Determinants of a reduced vaccine response were likewise largely similar in both groups and included a lower CD4/CD8 ratio. IMPORTANCE Some studies have suggested that people with HIV may respond less well to vaccines against SARS-CoV-2. We comprehensively compared B- and T-cell responses to different COVID-19 vaccines in middle-aged persons with well-treated HIV and individuals of the same age without HIV, who were also highly comparable in terms of demographics and lifestyle, including those with prior SARS-CoV-2 infection. Individuals with HIV generally mounted equally robust immunity to the different vaccines. Even stronger immunity was observed in both groups after prior SARS-CoV-2 infection. These findings are reassuring with respect to the efficacy of SARS-Cov-2 vaccines for the sizable and increasing global population of people with HIV with access and a good response to HIV treatment.


Subject(s)
COVID-19 , HIV Infections , Vaccines , Middle Aged , Female , Humans , COVID-19 Vaccines , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Viral , Immunoglobulin A , Immunoglobulin G
2.
Front Immunol ; 13: 976382, 2022.
Article in English | MEDLINE | ID: covidwho-2043448

ABSTRACT

Background: As SARS-CoV-2 will likely continue to circulate, low-impact methods become more relevant to monitor antibody-mediated immunity. Saliva sampling could provide a non-invasive method with reduced impact on children. Studies reporting on the differences between systemic and mucosal humoral immunity to SARS-CoV-2 are inconsistent in adults and scarce in children. These differences may be further unraveled by exploring associations to demographic and clinical variables. Methods: To evaluate the use of saliva antibody assays, we performed a cross-sectional cohort study by collecting serum and saliva of 223 children attending medical services in the Netherlands (irrespective of SARS-CoV-2 exposure, symptoms or vaccination) from May to October 2021. With a Luminex and a Wantai assay, we measured prevalence of SARS-CoV-2 spike (S), receptor binding domain (RBD) and nucleocapsid-specific IgG and IgA in serum and saliva and explored associations with demographic variables. Findings: The S-specific IgG prevalence was higher in serum 39% (95% CI 32 - 45%) than in saliva 30% (95% CI 24 - 36%) (P ≤ 0.003). Twenty-seven percent (55/205) of children were S-specific IgG positive in serum and saliva, 12% (25/205) were only positive in serum and 3% (6/205) only in saliva. Vaccinated children showed a higher concordance between serum and saliva than infected children. Odds for saliva S-specific IgG positivity were higher in girls compared to boys (aOR 2.63, P = 0.012). Moreover, immunocompromised children showed lower odds for S- and RBD-specific IgG in both serum and saliva compared to healthy children (aOR 0.23 - 0.25, P ≤ 0.050). Conclusions: We showed that saliva-based antibody assays can be useful for identifying SARS-CoV-2 humoral immunity in a non-invasive manner, and that IgG prevalence may be affected by sex and immunocompromisation. Differences between infection and vaccination, between sexes and between immunocompromised and healthy children should be further investigated and considered when choosing systemic or mucosal antibody measurement.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , COVID-19/epidemiology , Child , Cross-Sectional Studies , Female , Humans , Immunoglobulin A , Immunoglobulin G , Male , Prevalence , Prospective Studies
3.
Microbiol Spectr ; 10(4): e0040522, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1909606

ABSTRACT

Infants may develop severe viral respiratory tract infections because their immune system is still developing in the first months after birth. Human milk provides passive humoral immunity during the first months of life. During the COVID-19 pandemic, circulation of common respiratory viruses was virtually absent due to the preventative measures resulting in reduced maternal exposure. Therefore, we hypothesized that this might result in lower antibody levels in human milk during the pandemic and, subsequently, decreased protection of infants against viral respiratory tract infections. We assessed antibody levels against respiratory syncytial virus (RSV), Influenza virus, and several seasonal coronaviruses in different periods of the COVID-19 pandemic in serum and human milk using a Luminex assay. IgG levels against RSV, Influenza, HCoV-OC43, HCoV-HKU1, and HCoV-NL63 in human milk were reduced with a factor of 1.7 (P < 0.001), 2.2 (P < 0.01), 2.6 (P < 0.05), 1.4 (P < 0.01), and 2.1 (P < 0.001), respectively, since the introduction of the COVID-19 restrictions. Furthermore, we observed that human milk of mothers that experienced COVID-19 contained increased levels of IgG and IgA binding to other respiratory viruses. Passive immunity via human milk against common respiratory viruses was reduced during the COVID-19 pandemic, which may have consequences for the protection of breastfed infants against respiratory infections. IMPORTANCE Passive immunity derived from antibodies in human milk is important for protecting young infants against invading viruses. During the COVID-19 pandemic, circulation of common respiratory viruses was virtually absent due to preventative measures. In this study, we observed a decrease in human milk antibody levels against common respiratory viruses several months into the COVID-19 pandemic. This waning of antibody levels might partially explain the previously observed surge of hospitalizations of infants, mostly due to RSV, when preventative hygiene measures were lifted. Knowledge of the association between preventative measures, antibody levels in human milk and subsequent passive immunity in infants might help predict infant hospital admissions and thereby enables anticipation to prevent capacity issues. Additionally, it is important in the consideration for strategies for future lockdowns to best prevent possible consequences for vulnerable infants.


Subject(s)
COVID-19 , Respiratory Tract Infections , Viruses , Antibodies, Viral , COVID-19/epidemiology , Communicable Disease Control , Female , Humans , Immunoglobulin G , Infant , Milk, Human , Pandemics , Respiratory Syncytial Viruses , Respiratory Tract Infections/epidemiology
4.
PLoS Med ; 19(5): e1003991, 2022 05.
Article in English | MEDLINE | ID: covidwho-1846918

ABSTRACT

BACKGROUND: Emerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. METHODS AND FINDINGS: In a prospective cohort of 165 SARS-CoV-2 naive health care workers in the Netherlands, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. Four weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of mRNA-1273, followed by recipients of BNT162b2 (geometric mean titers (GMT) of 358 [95% CI 231-556] and 214 [95% CI 153-299], respectively; p<0.05), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 18 [95% CI 11-30] and 14 [95% CI 8-25] IU/ml, respectively; p<0.001). VOCs neutralization was reduced in all vaccine groups, with the greatest reduction in neutralization GMT observed against the Omicron variant (fold change 0.03 [95% CI 0.02-0.04], p<0.001). The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. We used linear regression and linear mixed model analysis. All results were adjusted for possible confounding of age and sex. Study limitations include the lack of cellular immunity data. CONCLUSIONS: Overall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination, which implies the use of mRNA vaccines for both initial and booster vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Cohort Studies , Health Personnel , Humans , Netherlands/epidemiology , Prospective Studies , SARS-CoV-2/genetics
5.
Sci Rep ; 12(1): 3884, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1740465

ABSTRACT

Current SARS-CoV-2 vaccines are effective, but long-term protection is threatened by the emergence of virus variants. We generated a virosome vaccine containing the Beta spike protein and compared its immunogenicity in mice to a virosome vaccine containing the original Wuhan spike. Two administrations of the virosomes induced potent SARS-CoV-2 neutralizing antibodies in both vaccine groups. The level of autologous neutralization in Beta-vaccinated mice was similar to the level of autologous neutralization in Wuhan-vaccinated mice. However, heterologous neutralization to the Wuhan strain in Beta-vaccinated mice was 4.7-fold lower than autologous neutralization, whereas heterologous neutralization to the Beta strain in Wuhan-vaccinated mice was reduced by only 1.9-fold compared to autologous neutralization levels. In addition, neutralizing activity against the D614G, Alpha and Delta variants was also significantly lower after Beta spike vaccination than after Wuhan spike vaccination. Our results show that Beta spike vaccination induces inferior neutralization breadth. These results are informative for programs aimed to develop broadly active SARS-CoV-2 vaccines.


Subject(s)
COVID-19 Vaccines/therapeutic use , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Breath Tests , COVID-19 Vaccines/immunology , Female , Mice , Mice, Inbred BALB C , Neutralization Tests , Vaccines, Virosome/immunology , Vaccines, Virosome/therapeutic use
6.
Cell Rep Med ; 3(1): 100486, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1569129

ABSTRACT

The urgent need for, but limited availability of, SARS-CoV-2 vaccines worldwide has led to widespread consideration of dose-sparing strategies. Here, we evaluate the SARS-CoV-2-specific antibody responses following BNT162b2 vaccination in 150 previously SARS-CoV-2-infected individuals from a population-based cohort. One week after first vaccine dose, spike protein antibody levels are 27-fold higher and neutralizing antibody titers 12-fold higher, exceeding titers of fully vaccinated SARS-CoV-2-naive controls, with minimal additional boosting after the second dose. Neutralizing antibody titers against four variants of concern increase after vaccination; however, overall neutralization breadth does not improve. Pre-vaccination neutralizing antibody titers and time since infection have the largest positive effect on titers following vaccination. COVID-19 severity and the presence of comorbidities have no discernible impact on vaccine response. In conclusion, a single dose of BNT162b2 vaccine up to 15 months after SARS-CoV-2 infection offers higher neutralizing antibody titers than 2 vaccine doses in SARS-CoV-2-naive individuals.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Vaccination/methods , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/virology , Female , Follow-Up Studies , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Neutralization Tests , Prospective Studies , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome
7.
EBioMedicine ; 72: 103589, 2021 10.
Article in English | MEDLINE | ID: covidwho-1433161

ABSTRACT

BACKGROUND: To optimise the use of available SARS-CoV-2 vaccines, some advocate delaying second vaccination for individuals infected within six months. We studied whether post-vaccination immune response is equally potent in individuals infected over six months prior to vaccination. METHODS: We tested serum IgG binding to SARS-CoV-2 spike protein and neutralising capacity in 110 healthcare workers, before and after both BNT162b2 messenger RNA (mRNA) vaccinations. We compared outcomes between participants with more recent infection (n = 18, median two months, IQR 2-3), with infection-vaccination interval over six months (n = 19, median nine months, IQR 9-10), and to those not previously infected (n = 73). FINDINGS: Both recently and earlier infected participants showed comparable humoral immune responses after a single mRNA vaccination, while exceeding those of previously uninfected persons after two vaccinations with 2.5 fold (p = 0.003) and 3.4 fold (p < 0.001) for binding antibody levels, and 6.4 and 7.2 fold for neutralisation titres, respectively (both p < 0.001). The second vaccine dose yielded no further substantial improvement of the humoral response in the previously infected participants (0.97 fold, p = 0.92), while it was associated with a 4 fold increase in antibody binding levels and 18 fold increase in neutralisation titres in previously uninfected participants (both p < 0.001). Adjustment for potential confounding of sex and age did not affect these findings. INTERPRETATION: Delaying the second vaccination in individuals infected up to ten months prior may constitute a more efficient use of limited vaccine supplies. FUNDING: Netherlands Organization for Health Research and Development ZonMw; Corona Research Fund Amsterdam UMC; Bill & Melinda Gates Foundation.


Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19 Vaccines/pharmacology , COVID-19 , SARS-CoV-2/immunology , Adult , BNT162 Vaccine , COVID-19 Vaccines/therapeutic use , Female , Health Personnel , Humans , Immunity, Humoral , Immunoglobulin G/blood , Male , Middle Aged , Netherlands , Prospective Studies , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL